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In this paper we demonstrate the locality of energy transport for incompressible 
Euler equations both in space and in scale. The key to the proof is the proper 
definition of a "local subscale flux," f/t(r), which is supposed to be a measure 
of energy transfer to length scales < l  at the space point r. Kraichnan suggested 
that for such a quantity the "refined similarity hypothesis" will hold, which 
Kolmogorov originally assumed to hold instead for volume-averaged dissipa- 
tion. We derive a local energy-balance relation for the large-scale motions which 
yields a natural definition of such a subscale flux. For this definition a precise 
form of the "refined similarity hypothesis" is rigorously proved as a big-O 
bound. The established estimate i s / / A t )  = O(l u'- ~) in terms of the local H61der 
exponent h at the point r, which is also the estimate assumed in the Parisi- 
Frisch "multifractal model." Our method not only establishes locality of energy 
transfer, but it also clarifies the physical reason that convection effects, which 
naively violate locality, do not contribute to the subscale flux. In fact, we show 
that, as a consequence of incompressibility, such effects enter into the local 
energy balance only as the divergence of a spatial current. Therefore, they 
describe motion of energy in space and cancel in the integration over volume. 
We also discuss theorems of Onsager, Eyink, and Constantin et al. on energy 
conservation for Euler dynamics, particularly to explain their relation with the 
Parisi-Frisch model. The Constantin et al. proof may be interpreted as giving a 
bound on the total flux, Ht=SddrHl(r) ,  of the form Hl=O(l~3-J), where z 3 
is the third-order scaling exponent (or Besov index), in agreement with the 
"multifractal model." Finally, we discuss how the local estimates are related to 
the results of Caffarelli-Kohn-Nirenberg on partial regularity for solutions of 
Navier-Stokes equations. They provide some heuristic support to a scenario 
proposed recently by Pumir and Siggia for singularities in the solutions of 
Navier-Stokes with small enough viscosity. 
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1. I N T R O D U C T I O N  

This paper is the third in a series of works which studies the inertial 
transfer of energy in incompressible fluids, relevant to high-Reynolds- 
number turbulent flow. In the first paper, "~ subtitled "Fourier analysis and 
local energy transfer" [hereafter referred to as (I)],  we established the 
fundamental property of locality in scale of instantaneous energy transfer. 
Our proof was inspired by the Parisi-Frisch "multifractal model" of tur- 
bulence, (2"3~ which postulates that individual realizations of the turbulent 
velocity field are H61der continuous in the zero-viscosity limit, with H61der 
exponent h occurring on a fractal set S(h). We recall that the velocity field 
is said to have H61der exponent h at space point r, or v e Ch(r), if 

Iv(r  + l )  - v(r)l = O(l h) (1) 

In fact, under a H61der condition with exponent 0 < h < 1, we established 
in (I) an estimate 

HA = O(2ml - 3h)) (2) 

for an energy flux HA to wavenumbers > 2  A. This estimate is local in scale, 
i.e., determined by the contribution of "local" wavevector triads. However, 
a surprise of our paper (t) was that the conventional measure of energy flux 
in k space, H(k), need not be dominated by the local triadic interactions. 
In fact, it was shown by an explicit example that very nonlocal triads can 
dominate in this conventional quantity through a process in which energy 
transfer between two large wavenumbers is "catalyzed" by a very low- 
wavenumber mode in the energy range. What we found in ref. 1 was that, 
if a "band-averaged flux" is defined as 

HA= ~---d f211'+~ dk H(k) (3) 

cancellations occur in the contributions from the nonlocal triads which are 
then appropriately weighted. It is therefore this averaged flux which is 
locally determined rather than the conventional one. 

Although the argument in ref. 1 established local transfer, it neverthe- 
less was based on a quite different physical mechanism than is often 
stated. A common belief is that the nonlocal triads describing convection 
of small-scale eddies by larger ones must be removed by going to "co- 
moving" or "Lagrangian" coordinates with subtract the purely convective 
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contributions, t4)'2 Siggia tS) and Zimin t6) attempted to establish locality by 
making a theoretical analysis of the Navier-Stokes equations employing 
"comoving eddy" representations to at tempt to remove the convective 
contributions of nonlocal triads. In the second paper of our series, t7) 
subtitled "Space-scale locality and semi-Lagrangian wavelets" ['hereafter 
referred to as ( I I ) ] ,  we examined this argument  by constructing an exact 
version of such comoving eddies using a continuous wavelet representation 
of the Navier-Stokes dynamics. A main result of (II) was that the 
representation by "comoving eddies" does no t  suffice to remove the purely 
convective contributions from the energy transfer. We constructed a 
specific example for this representation, similar to that in ref. 1, in which 
the transfer is "catalyzed" by the large scales and is proport ional  to the 
amplitude of the large-scale velocity rather than its gradient. We further- 
more showed that the previous heuristic arguments overlooked a 
fundamental  difficulty of the "comoving eddy" representation, which is 
that "detailed energy conservation" does not  hold for triads of comoving 
eddies. 

Another problem in turbulence where wavelets would appear to be 
useful a pr ior i  is in the definition of  "local subscale energy flux," i.e., a 
measure of energy transport  to small length scales locally at a point in 
space. This is a fundamental  issue of turbulence theory connected with the 
Kolmogorov  "refined similarity hypothesis," which was originally proposed 
by Kolmogorov  tS~ as a relation 

[d /v ( r ) ]  3 
et(r) ~ 1 (4) 

between the magnitude of the velocity difference Atv(r) over length scale l 
at point r and the volume average e~(r) of the local dissipation in a sphere 
of radius l centered at point r. However, it was argued by Kraichnan in 
Section 6 of ref. 9 that a relation like Eq. (4) should hold for appropriately 
defined local fluxes Hi(r)  rather than for space-averaged dissipation ~t(r). 
Recently, Meneveau tl~ employed wavelets in an attempt to define a local 
flux Ha(r ), measuring energy transport  to eddies of size < a  at space point 
r. However, we showed in (II) that there is a problem with Meneveau's 

-' The idea is often attributed to Kraichnan that locality of energy transfer is due to a 
possibility of removing convective interactions by transforming to a Lagrangian frame. 
However, this seems to be a misinterpretation. Kraichnan's point was instead that time 
scales in a Lagrangian description are intrinsic and locally determined (whereas Eulerian 
time scales are dominated by distant convective sweeping). He explicitly pointed out in his 
earliest work on DIA that locality of instantaneous transfer is obtained in the Eulerian 
representation as long as suitable scaling exists. 
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definition of the "local subgrid fluxes" Ha(r) because he included contri- 
butions from eddy triads with all three members of supergrid scale >a .  
A corrected definition was shown to be locally determined in space by the 
Hrlder  exponent at the given point, as required by the "multifractal 
model," but even the corrected definition failed to be locally determined in 
scale. The essential problem with the wavelet definitions of flux is that they 
fail to resolve wavenumbers smaller than the intrinsic spectral width of the 
wavelet and are therefore infected with spurious contributions from the 
large-scale modes. 

Our papers (I) and (II) left unsolved the problem of defining an 
appropriate local subscale flux which would obey an estimate simul- 
taneously local in space and scale. Therefore, the uncomfortable possibility 
remained that "local interactions" might dominate in the energy transfer 
only for a global quantity, averaged over space, and that locally in space 
the contribution of nonlocal triads might be the largest contribution. If that 
were so, then there would be little reason to believe in Kolmogorov's  
hypothesis of universality of  small-scale statistics. Validity of that 
hypothesis would certainly require that the energy cascade be local in each 
small region of the flow and not merely in a spatially average sense. In this 
paper we derive an energy balance equation for the "large-scale motions" 
and we show that it yields immediately a natural prescription for a local 
flux H~(r). The definition we use for the "large-scale" component of the 
velocity field, corresponding to length scales >1, is 

v1(r) = (v �9 ~pl)(r) (5)  

which is a convolution of v with a smooth mollifier tpl(r)= l-dtp(r/l). This 
type of smooth filtering is precisely the method used in large-eddy simula- 
tion (LES) of turbulent flow (e.g., see refs. 11 and 12). It has also been used 
technically in a recent mathematical proof on energy conservation by 
Constantin et al. (CET), (131 which has partly motivated our work. It turns 
out to be convenient in our estimations to choose ~o to have compact 
support in space, but there is actually a fairly great latitude in the choice 
of tp. For any of these choices we show that the flux Hi(r)  so-defined obeys 
the correct space-scale locality estimates. Furthermore, the appearance of 
the flux in a local energy-balance relation confirms its physical interpreta- 
tion as a "subscale flux" of energy to modes at distances < l. The argument 
greatly clarifies the role of convection processes in the energy balance, since 
these are shown to contribute only to the spatial transport of energy and 
not to the "downward" transfer to smaller length scales. 

Our plan in this paper is as follows: In Section 2 we derive the local 
energy-balance relation. The physical significance of the various terms in 
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the balance relation are explicated and shown to separate clearly into 
contributions to a "spatial current" and to a "subscale flux." In Section 3 
we discuss the relation of the so-defined local flux to Kraichnan's version 
of the refined similarity hypothesis and also to the Parisi-Frisch "multi- 
fractal model." A basic space-scale local estimate for the flux is established 
in terms of the local H61der exponent of the velocity field. In Section 4 we 
briefly review the CET conservation theorem from our perspective. We 
show that their estimate for the global flux is also that predicted by the 
"multifractal model" heuristics. Finally in Section 5 we explain how the 
estimates on local fluxes relate to the possibility of Navier-Stokes 
singularities at small viscosity. 

2. LOCAL ENERGY B A L A N C E  IN S P A C E  A N D  SCALE 

In this section we derive the local balance relation for kinetic energy 
in scales > l, 

e , ( r , t ) = !  " ~vT(r, t) (6) 

very much in the spirit of the local conservation laws of nonequilibrium 
thermodynamics (e.g., see Chapter II.3 of ref. 14). For generality of the 
discussion, we shall here consider the velocity field to be a solution of the 
Navier-Stokes equations 

0,v + (v" V)  v = - V p  + Vo Av (7) 

with molecular viscosity %. These equations are assumed to be obeyed in 
the sense of distributions, i.e., in weak sense. It therefore follows that the 
velocity field v I for scales > l obeys 

0,vl+ V" (v |  - V p l +  Vo/% (8) 

where the subscript 1 denotes here the smooth filtering operation by con- 
volution, f ~ - f ,  ~Pt. This equation holds at each instant if the solution 
possesses some continuity in time; otherwise, it requires some additional 
averaging in time. 

A key identity, which was noted by CET, m) is 

(v | v ) / =  v / |  vl + R/(v ,  v) - (v - vl) | (v - vt) (9)  

with 

and 

R/(v, v)(r) -= f ddh ~0/(h)[ZJhV(r ) | AhV(r)] (1o) 

Ahv(r ) ~ v(r -- h) - v(r) (I 1 ) 
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The proof is elementary. The important point to observe is that, except for 
the first term in Eq. (9), the velocity appears only through its difference A~v 
over length scales ~ l  or through its small-scale component v~ = v -  v/. It is 
convenient to define 

T/(v, v)--Rl(v, v)-- v~| v~ (12) 

This term essentially depends only upon the modes at length scales < l  and 
can be bounded by using the H61der conditions. The first term in the right- 
hand side of Eq. (9) contains the absolute velocity vt and cannot be given 
a good bound. 

Using this identity, it is easy to derive the following energy balance 
relation: 

~3,e/(r, t ) + V ' j l ( r ,  t ) =  --Ht(r, t ) - e l ( r ,  t) (13) 

The various terms appearing are 

~l-- Vo(VVl) 2 (14) 
and 

Ht = -(Vv/) :T/ (15) 

where A : B = ~,j A~Bij and A 2 = A : A. Also, 

Jl =- (Pl + el) vl + TI " v l -  voVel (16) 

Incompressibility was used essentially in writing the jz term as a total 
divergence. 

Each of the terms in the microscopic balance relation (13) has a 
precise physical interpretation. The term ez(r, t) represents the local dissipa- 
tion of energy in the length scales > l  through the action of molecular 
viscosity. The term j/(r, t) is obviously a spatial current of energy in the 
scales >1, with contributions from convective transport by the velocity at 
those scales, proportional to v~, and from the tensor T/. This latter clearly 
represents a stress tensor, or pressure, due to the small-scale components 
<1, i.e., a kind of "Reynolds stress." Therefore, the contribution T/.  v / to  
the energy current represents a spatial diffusion of energy in the large scales 
>1 due to "eddy viscosity" from the small-scale components </. On the 
other hand, the term Hi(r) = --(Vv/)(r) : T/(r) represents a local energy f lux  
from the large scales to the small scales. It gives the "effective dissipation" 
of energy in the large scales > / d u e  to the action of the eddy stress of the 
small scales < l  on the gradients of the large-scale motion. 
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3. REFINED S IMILARITY HYPOTHESIS 
AND THE MULT IFRACTAL MODEL 

There is a very close relation of the discussion in the previous section 
with that of Kraichnan in Section 2 of ref. 9, where he considered also the 
problem of defining a "local energy flux." However, his proposed definition, 
H"(x, t) in his Eq. (2.6), differs in a few important respects from our defini- 
tion in Eq. (15). First, Kraichnan used a sharp cutoff in wavenumber. We 
have already seen in (I) that this is dangerous, and allows a spurious 
contribution from the large scales to dominate, even in the global flux H" 
defined by a volume average. Second, the quantity /]"(x, t) proposed by 
Kraichnan is actually of mixed character, including spatial transport of 
energy in addition to proper transfer of energy to the small-scale motions. 
The importance of the decomposition of the filtered stress tensor 

(v | v)t = v/| v/+ Tt(v, v) (17) 

is that it allows a clean separation of these effects. 
However, the main argument in Section 6 of Kraichnan's paper is 

confirmed by our analysis. He proposed there that a "refined similarity" 
relation should hold of the form 

[A/v(r)] 3 
HAr) 1 (18) 

in place of Kolmogorov's hypothesis, Eq. (4). The reader is referred to that 
work for Kraichnan's very beautiful analysis of the matter. What we will 
show here is that the relation (18) holds in the following precise sense: that 

Atv(r) = 0(1 h) ~ Ht(r ) = 0 ( 1 3 1 ,  - t )  (19) 

at each space point r. In other words, Eq. (18) leads to a correct big-O 
estimate of the flux Hl(r ) in terms of the local H61der exponent at the 
point r. This is also a fundamental tenet of the Parisi-Frisch "multifractal 
model, ''<2"3~ which is here rigorously confirmed as well. 

In fact, to establish Eq. (19), we need just the following elementary 
estimates: 

Rl(v, v)(r) = 0(I 2h) (20) 

and 

and 

v;(r) = O(l h) (21) 

Vvt(r) = 0(11'-~) (22) 
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when v s Ch(r), i.e., when the local H61der exponent  of the velocity at point  
r is h. These estimates are quite easy to derive with our  smoothness and 
support  assumptions on r For  the convenience of readers, we give brief 
derivations in an appendix. 

Using now these estimates in conjunct ion with the definition 

/ / l ( r )  = - (Vvt ) ( r )  : T/(r)  (23) 

we can see directly that / - / t ( r )=  0(l 3h-1) whenever Jv~ ( r ) =  O(lh), as was 
claimed. It was obviously crucial in obta ining this result that our definition 
of //~(r) contains only contr ibut ions from the small-scale modes < l  or 
from the large-scale gradient Vv~. On the other hand, the term V-jz( r )  does 
not obey an estimate like Eq. (19). Since it represents a space flux of 
energy, with a large contr ibut ion from pure convection, there is no physical 
reason to expect that it should. Much confusion on the subject of "local 
transfer" has arisen from a failure to distinguish between the different 
physical effects of t ransport  in space and in scale. 

It is very natural  to at tempt to model the small-scale stresses T / b y  a 
gradient law in terms of the large-scale velocity field with a phenomenol-  
ogical "eddy viscosity" coefficient v~, as 

T,( r )  = - v / ( r )  �9 [Vvt(r) + Vv/(r) v]  (24) 

Consistency with the previous estimates is obtained if 

v~(r) = O(l'  + ~') (25) 

at a point where the local H61der exponent  is h. 

4. ENERGY C O N S E R V A T I O N  A N D  BESOV SPACES 

In our  paper (I) we studied a claim from a 1949 work of Onsager, ~5J'3 
who pointed out the possibility of energy dissipation without molecular 

It may be worth pointing out here that Onsager's observation on energy dissipation for 
Euler equations is probably historically the first example of a conservation-law anomaly, 
similar to the well-known axial anomaly in quantum electrodynamics. In fact, the filtering 
approach we have used may bc regarded as a smooth version of the "point-splitting 
regularization" used in field theory. In that case, the nonvanishing of the flux H~ in the local 
energy-balance equation (13) for 1---, 0 is entirely analogous to the anomaly that appears as 
a source term in local conservation laws of quantum fields, although it appears here for a 
classical field theory. The interpretation of turbulent fluxes as anomalies was suggested 
in a recent work by Polyakov, (~6~ which our argument makes precise. Note that the first 
derivation of an anomaly in relativistic quantum field theory was in the 1951 paper of 
Schwinger, (nT) two years after Onsager's remark. 
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viscosity in ideal hydrodynamics and who gave also a sharp condition for 
conservation of energy by Euler dynamics. In particular, we proved by 
Fourier analysis a version of his claim: namely, that energy is conserved 
for a solution of Euler equations with a ",-H/51der continuous" velocity, 
v ~ Ch,, whose Fourier coefficients Ak= obey the condition 

Ikl h Iak= I < + ~  (26) 

when h >  1/3. Under this condition, we established the bound (2), which 
implies that lim A ~ +~ HA = 0 when h > 1/3 and yields the result. However, 
Onsager actually proposed that the result is true for a velocity field obeying 
the standard H61der condition, v e C h, i.e., 

Iv(r) - v(r')l = O(Ir - r'l h) (27) 

when h > 1/3, whereas Eq. (26) is sufficient, but not necessary, for Eq. (27). 
In a later paper ~9~ we conjectured energy conservation to hold under even 
a weaker assumption than Onsager's, namely, under the condition that 

-7 l/p 
=O,,S, 

for p i> 3 and s > 1/3. This is a H61der condition in LP-mean sense, or a 
so-called Besov condition. Itsl Using a Littlewood-Paley criterion for Besov 
spaces, it is actually quite easy to prove by the methods of (I) that energy 
is conserved for s >  1/2 and p~>3, but we did not find a proof of the 
stronger result for s > 1/3. 

Subsequent to our work, a paper appeared by Constantin etal.  
(CET) 113) which solved this problem. In fact, those authors proved not 
only the original Onsager claim on energy conservation, but also our 
conjecture with just the weaker Besov condition (28). The strategy of the 
proof of CET is actually quite similar to that of our proof in (I), in that 
it is based upon the analysis of an energy flux Ht to length scales < l  
(although those authors did not use the language of "energy flux"). The 
flux of CET is defined by using a smoother averaging than our definition 
from (I), Eq. (3) above. In fact, they studied the quantity 

d r 1 
Ut = -- ~ J I ddr ~ ]v,(r)[ 2 (29) 
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using the same type of filtered field vl as we defined in Eq. (5). Note that 
this is just the global flux corresponding to the local flux which we defined 
in Section 2: 

111 = f ddr 1it(r) (30) 

The key difference between the work of CET and ours, aside from our 
more physical perspective, is that our analysis is local and theirs was 
global. With these definitions, CET established 

H I =  O(13s - 1) (31) 

when v satisfies the Besov condition (28) for p = 3 ,  which proved their 
result. 

From the estimates given in the previous section it already follows that 

HI = O(13h - 1) (32) 

when v ~ C h. This proves immediately the claim of Onsager for conservation 
under the standard H61der condition with h > 1/3. It is hard to imagine a 
simpler proof of the theorem. (Historically, it is tempting to imagine that 
this was Onsager's own argument, since it is based upon a standard calcula- 
tion in nonequilibrium thermodynamics, a subject Onsager pioneered.) Our 
own proof from (I) in a wavenumber representation established conserva- 
tion only under the stronger condition on Fourier coefficients in Eq. (26). 
On the other hand, our detailed estimates in wavenumber space provided 
a little more information than just the "local estimate" (2). Namely, we 
established decay bounds also on the contributions from the "nonlocal 
triads," which is important to assess the size of corrections to local transfer 
at finite Reynolds number. In fact, it was shown in our paper (I) that the 
part of the energy flux H A due to direct transfer from the wavenumbers 
~<2 A - 'J is a fraction 0(2 -(1 -h),~) of the total flux. Likewise, the part of the 
energy flux directly into the wavenumbers /> 2 • + a is a fraction O(2-2ha) of 
the total flux. Although the dominant mechanism of energy transfer in scale 
is therefore the "local interactions" under the condition v eCJ,  with 
0 < h <  1, the corrections to local transfer show only a slow decay, 
algebraic in wavenumber. 

In addition, CET proved (131 the stronger result that energy is con- 
served for a (weak) solution of Euler equations if v ~ B~ '~  for any s > 1/3. 
The maximal value of s =  Sp for which v e B~ '~  is essentially a type of 
"multifractal exponent" for space averages, related to the scaling exponent 
Zp in 

f dar Iv(r + !) -- v(r)] p ~ (33) Up 
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as Zp = p .Sp. (See our discussion in ref. 19.) The CET result was obtained 
from the bound 

Fit= O(l -'3- ') (34) 

It is interesting to observe that this is exactly the estimate suggested by the 
"multifractal model" heuristics. Indeed, since /T t ( r )~ l  u ' - I  when the 
H61der exponent at point r is h, it is suggested that 

t* 

/11 j p(dh) l (3h - 1)+ (d- D(h)) 

lZ3 - I 

when l-~0. We have used here the well-known formula (2) 

(35) 

Zp = inf[ph + ( d -  D(h))] (36) 
h 

This is proved to be a valid formula for the (maximal) Besov index in 
ref. 19, at least when D(h) is taken to be a certain "box-counting dimen- 
sion." 

The proof of CET is not based upon this heuristic argument. Instead, 
they simply est imate/ / t  by using the H61der inequality and the bounds on 
LP-norms: 

[IRt(v, v)[I L'~ = O(12s) (37) 

and 

IIv~ll L3 = 0 ( 1 0  (38) 
and 

IIVvAI L3 = O(P'-  ') (39) 

when v e B~' ~. Derivations are included in the appendix for the convenience 
of the reader. 

The same circle of mathematical ideas can be used to relate "scaling 
exponents" of the local flux to those of the velocity field. This is suggested 
by the relation to.the refined similarity hypothesis discussed in Section 3. In 
fact, the original Kolmogorov form of the hypothesis (8) was introduced in 
order to relate scaling exponents Tp of the volume-averaged dissipation, 

( e ~ )  ~ l ' p  (40) 

822/78/1-2-24 
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for l---, 0, to the exponents (p of the inertial-range structure functions, as 

~p = p/3 + ~'p/3 (41) 

We find here a precise analog for the flux in the form that 

I dar IH'(r)IP = O(U~'-~) (42) 

in terms of the velocity exponent Zp introduced in Eq. (33). For the proof 
we refer again to the appendix. If a maximal exponent tp is introduced as 
the upper bound of those for which 

f ddr I//~(r)l p = O(I'P) (43) 

then these results imply that 

zp <<. p/3 + tp/3 (44) 

This is entirely analogous to Eq. (41) except that we can derive rigorously 
only an inequality (because we deal with big-O bounds rather than true 
asymptotic scaling). 

5. A RELATION TO NAVIER-STOKES SINGULARIT IES 

There is one rather surprising consequence which is suggested by the 
"multifractal model" estimates on local fluxes H~(r). It is probably still 
generally believed that Navier-Stokes equations have smooth solutions for 
all time starting from smooth initial data with any positive viscosity Vo. 
Instead, it is suggested by the "multifractal model" that singularities may 
occur when the viscosity is sufficiently small. Although the argument is 
heuristic and probably hard to make rigorous, we will present it here to 
stimulate further thought on the issue. 

The key idea is that there is a "spectrum" of viscous cutoffs in tur- 
bulence associated to the various H61der exponents of the velocity field in 
the flow. ~2~ At a point where the H61der exponent is h the "multifractal 
model" predicts that the cutoff will scale with viscosity as 

P0 ~1/(1 +h) 
- -  ( 4 5 )  ~Th ~ 1o \Voc/ 

Here lo is a finite length and Voc is a finite reference viscosity included to 
make the formula dimensionally correct. The idea behind this formula is 
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that the "energy cascade" at point r will proceed down to a length scale 
l =  q(r) where the local flux Hi(r) and the viscous dissipation et(r) are of 
the same order of magnitude. This is equivalent to the matching of "eddy 
viscosity" with molecular viscosity 

v/(r) ~ Vo (46) 

us ing the gradient representation (24) of the small-scale stress tensor. The 
formula (45) above then follows immediately by inverting Eq. (25) with 
l=qh. 

It is easy to see that Vo,. plays the role of a "critical viscosity": 
if Vo<Voc, then q h ~ 0  as h ~ - 1 .  This suggests that there may be 
singularities for the Navier-Stokes dynamics at finite viscosities Vo < Voc if 
the Euler equations can generate an h = - 1  singularity. Coincidentally, this 
is just the H61der exponent of a singular vortex filament, which could be 
produced by vortex-stretching processes in the inertial dynamics. This 
speculation seems to be consistent with known facts on regularity of 
Navier-Stokes solutions. It was proved already by Leray ~=~ that the 
Navier-Stokes equations have global smooth solutions if the viscosity is 
large enough (see also Ladzhenskayal2~). This is compatible with existence 
of a critical Voc. Also, the Caffarelli-Kohn-Nirenberg result ~24) on partial 
regularity allows a singularity set in space-time of Hausdorff dimension 1 
(but one-dimensional Hausdorff measure zero). Their argument further- 
more establishes that any singularity which might appear must have a 
minimum rate of blowup Iv] i> C/r for distance from the singularity r ~ 0 
(see Section 5 of ref. 24 for a precise statement). The relation of this blowup 
rate to the h = - 1  we obtained heuristically is not accidental, since both 
arguments are based upon a local energy balance. Therefore, all the 
rigorous results are consistent with "filamentlike" singularity sets occurring 
at a discrete set of times. Such a scenario for Navier-Stokes singularities is 
remarkably similar to one advanced by Pumir and Siggia ~25~ on the basis 
of a vortex filament simulation. In their picture the irregular points of the 
velocity will be a true space-time set, traced out by a "pinch singularity" 
which runs up a pair of antiparallel vortex lines. However, recent results of 
Constantin-Fefferman indicate this is an unlikely situation for singularity 
formation. 126) 

A P P E N D I X .  B A S I C  E S T I M A T E S  

A standard mollifier ~o is taken to be nonnegative with unit integral: 

f dar cp(r) = I (At) 
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It is chosen here also to be supported in the unit ball and to have some 
smoothness (one continuous derivative is actually sufficient). By definition 

v/(r) = f ddr ' v(r') ~ol(r -- r') (A2) 

Therefore, with v~ = v - v/, 

v~(r)= f ddr ' Iv(r)-- v(r')] ept(r-- r') 

= --f ddh Ahv(r) ~pt(h) (A3) 

Using the condition v ~ Ch(r), i.e., 

Izlhv(r)l ~< (const) Ihl h (A4) 

it follows directly from Eq. (A3) that 

[v;(r)[ ~< (const) f dah ~p/(h) Ihl" 

= O(l") (h5) 

Since 

R/(v, v)(r)= f ddh cp/(h)[Ahv(r) | ZlhV(r)] 

the same arguments give 

IR/(r)l = 0(I 2h) 

Finally, using ~ V~b = 0, 

Vvl(r) = f dar ' (V~01)(r - r')Fv(r') - v(r)] 

= f ddh (Vq01)(h) Ahv(r) 

Applying the same estimates as before, we have 

IVv/(r)l = O(l h-l)  

(A6) 

(A7) 

(A8) 

(A9) 
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We note as an aside that the identity (A3) yields the following simple 
expression for the small-scale stress tensor 

Tl(r) = (A~.~v(r)| <A~.~v(r)>/| (A~.~v(r)>/ (A10) 

Here < .> /=S  ~o1(. ) denotes an average over the separation distance with 
respect to the filter. 

s ,  oo We now consider the estimates under the Besov condition V~Bp , 

which may be stated as 

flA. vii Lp = O( rhl s) (A11 ) 

From Eq. (A3), it follows by Jensen's inequality for p > 1 that 

Iv;(r)lP ~< f dah r IAhv(r)l p (A12) 

Integrating over r, it follows that 

IIv~ll ;_p ~< f dah r ~, (A13) 

from which the estimate 

II v; [I L. = o(l  s) (A 14)  

is immediately obtained. Using the Cauchy-Schwartz inequality and 
arguing in the same manner as above it follows from the expression (A6) 
that 

p/2 [IRt[I L~'- <~ f dab qb(h) [IAhvll P, (A15) 

This gives the estimate 

[[R,[[ c,,-' = O(12s) ( A 1 6 )  

The final estimate is only slightly more difficult. Using Eq. (A8), it can be 
shown that 

IlVvzll Lr = O( l  s -  ')  (A17) 

Jensen's inequality can still be applied if the mollifier ~o is chosen to be 
spherically symmetric and monotonically decreasing in the radial coor- 
dinate (the integrals must be separated into two terms, corresponding to 
increasing and decreasing parts along a rectilinear coordinate direction). 
The details are left to the reader. 
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For  the purpose of deriving these results with filter functions q~ used 
in practical LES modeling, we remark that quite modest regularity actually 
suffices. For  example, the local results hold if q~(r) and Vq~(r) are both con- 
tinuous and have a finite Irl 2h moment.  The commonly  used Gaussian filter 
is a "good" example which easily satisfies these constraints. However, the 
sharp cutoff filter in Fourier space does not and, in fact, Example 1 in ref. 1 
shows that the bounds may indeed be violated for this filter. These points 
are discussed at length in another work. (27) 

Finally, let us derive the bound claimed at the end of Section 4 on 
moments  of the local flux, Eq. (42). In fact, noting that l ip  = 1/(3p) + 2/(3p), 
we have that 

II/Ttll p ~< IIVvAI 3p IITAI 3p/2 (A 18) 

follows from the (generalized) H61der inequality. Applying the previous 
estimates (A14), (A16), and (A17) then gives, for each e > 0, 

1I/TAI p - O( 13s3p- l - t )  (A19) 

which is the precise statement of Eq. (42). 
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